CZECH-ISRAELI WATER MANAGEMENT SEMINAR Thursday, June 19, 2025

Quaternary treatment of wastewater in Israel

Hadas Raanan Kiperwas, Ph.D.

Mekorot in figures

304,000 water samples analyzed per year

Over **1,000** active wells drilled

Supplies **70**% of the total water consumption in Israel

13,000 km of water pipelines

85% of potable water in Israel

6 certified laboratories in Israel

Integrating 600 million m³ of desalinated seawater per year

10 command and control centers

9 wastewaterpurification facilities and reclamation plants

3,000 production and supply installations

23 desalination plants

1.7 billion m³ of water supplied per year (423 billion gallons)

Topics for discussion

- Wastewater reclamation in Israel
- Regulation Effluent Quality Standards and Quality-based effluent reuse
- The SHAFDAN Mekorot's reclamation and distribution system
- Future-proofing

Israel – an overview

- A wide discrepancy in rainfall spread between districts and seasons
- > A High probability of consecutive dry years
- Regional discrepancy in natural water resources
- Conveying water outside the borders of the watershed
- Continuous population growth
- Geopolitical aspects Cross border, shared water sources

Annual water demand (мсм)

- > Annual Water demand: 2,600 MCM
- > Annual recharge (median): 1,200 MCM

Annual demand of different water types

Effluent Reclamation

- Israel reuses 87% of the treated effluents the highest rate in the world!
- Ability to supply all the agricultural needs
- Israel's strategic goal for the next decade is to increase the reuse to 90%

Reclaimed Wastewater Policy Principles

- > Full use of Wastewater minimize disposal to the environment. Encouraging regional systems.
- **Economic efficiency** Different qualities will be used appropriately, subject to agricultural, health & ecological limitations.
- > **Fairness** Sewage producers are responsible for treatment and purification. Reclaimed water users, for usage systems. The state participates for external costs.

- Determine maximum levels for 36 parameters for irrigation and discharge to rivers.
- > Determine effluents quality for:
 - unrestricted agricultural irrigation
 - restricted irrigation (small WWTP or specific geographical areas)
 - Public gardening irrigation

- The chloride in the effluent should not exceed 80 mg/l above its concentration in the supply water. Limitation of Boron 0.4 mg/l
- Monitoring and control program on the quality and quantity. On line monitoring: flow, turbidity and chlorine.
- Compulsory reporting of monitoring, sampling and test results. Monthly to the regulators, annually to the public.

Use of effluent according to quality

Treatment	Quality	Use
Primary Treatment (Sedimentation)	Primary effluents	
Secondary Treatment	Secondary effluents	Restricted agricultural irrigation
Secondary Treatment + Nutrients removal		Discharge to rivers
Tertiary Treatment + disinfection	Tertiary effluents	Unrestricted agricultural irrigation
Tertiary Treatment+ Residual disinfection at the consumer		Public gardening irrigation
SAT, RO, Advance oxidation	Quaternary effluents	Reclaimed water

60,000 acres

243 Km²

2.5 Million People

Daily Flow rate 100M US Gallons

SAT Advantages and Performance

Parameter	units	Secondary Effluent	SAT
Total Coliform	cfu/100ml	10,850	1
Fecal Coliform	cfu/100ml	7,575	<0.01
Streptococci Faecalis	cfu/100ml	3,094	<0.01
Total Bacteria	cfu/1 ml	229,955	246
Coliphage	PFU/L	960	0.05
EnteroVirus	PFU/L	65	< 0.001
AdenoVirus	PFU/L	115	<0.001
NoroVirus	PFU/L	12.5	<0.001
DOC	mg/l	11	<1
COD	mg/l	35	2
NH4	mg/l	5.2	<0.05
NO3	mg/l	3.4	28
P/PO ₄	mg/l	0.76	0.15
turbidity	mg/l	1.8	0.2

Reclaimed water quality is within the limits of the Israeli drinking water standard

- Consistent, stable and reliable SAT performance during over the 37 years of continuous operation
- > Provides underground storage to manage seasonality of demand
- > A naturally robust process
- > Requires relatively low technical expertise

The challenge for the years to come

- Current SAT at capacity
- No available land for new SAT basins
- > Effluent amount to keep increasing @~1.8% annually

Need for a supplemental solution to provide "SHAFDAN quality" water

"SHAFDAN quality" definition

- > 10 log removal for viruses
- > 8 log removal for crypto. and giardia
- minimum 3 barriers of >1 LRV for viruses, cryptosporidium and giardia
- >>80% removal of TrOCs from a pre-selected list
- Technology adapted as Tier 1
- > Economically viable, protective of the environment

Technologies considered

Alternative Industrial Shafdan Treatment Train (following Shafdan WWTP)	Recovery ⁽¹⁾	Logic and Considerations	Relative Cost ⁽²⁾
UF, RO, UV AOP	85% ⁽³⁾	 RO based treatment is a technology very familiar to Mekorot. RO can robustly handle the variable Shafdan WWTP effluent quality. 	 Highest Cost for treatment only. Additional brine treatment and disposal costs are substantial. Substantial water lost due to brine from RO. Higher recovery RO systems increase cost.
Ozone, BAC, UF, UV	>99% ⁽⁴⁾	 Use non-RO processes to maximize water recovery and reduce cost. Rely upon the Shafdan WWTP to fully nitrify (with no detectable effluent nitrite) and produce consistent high-quality effluent (e.g., consistent and relatively low TOC) Add in UF to provide an important protozoa barrier 	 Lowest cost solution. Not a viable solution, as the Shafdan WWTP is not operated to provide a nitrite free, fully nitrified, and stable and low TOC effluent.
Secondary MBR, ozone, BAC, UV	>95% ⁽⁴⁾	Provides for robust treatment of Shafdan WWTP effluent prior to ozone	 Anticipated to be a slightly higher cost compared to the ozone, BAC, UF, UV system above. Demonstration testing will confirm costs.

ETF – Enhanced Treatment Facility

Technology	Virus Reduction	Protozoa Reduction	Chemical Reduction
LLMBR	Minimum 90% removal, new data indicates 99.9% removal	Minimum 99.7% removal, new data indicates 99.99% removal	Good reduction of TOC and various chemicals
Ozone	99.999% reduction depending upon control set points	Limited reduction anticipated	Robust destruction of a broad range of constituents, depending upon control set points
BAC	Possible with coagulation/flocculation step	Possible with coagulation/flocculation step	Robust biodegradation for a broad range of constituents, depending upon control set points
UV	Depends upon control set point, but up to 99.9999%	Depends upon control set point, but up to 99.9999%	Photolysis of some constituents depending upon control set points

Piloting for technology validation

(Consistently achieving complete nitrification)

Pathogen removal

TrOCs removal

TrOCs removal compared to SAT

Current status: full scale design, 170,000 m³/day for current plant

* Future ETF indicative design by Yoan Yinon and Carollo Engineers

PUMPING STATION

ACCESS

